Nonstationary tight wavelet frames, II: unbounded intervals
نویسندگان
چکیده
منابع مشابه
Nonstationary Tight Wavelet Frames, II: Unbounded Intervals
From the definition of tight frames, normalized with frame bound constant equal to one, a tight frame of wavelets can be considered as a natural generalization of an orthonormal wavelet basis, with the only exception that the wavelets are not required to have norm equal to one. However, without the orthogonality property, the tight-frame wavelets do not necessarily have vanishing moments of ord...
متن کاملNonstationary Tight Wavelet Frames, I: Bounded Intervals
The notion of tight (wavelet) frames could be viewed as a generalization of orthonormal wavelets. By allowing redundancy, we gain the necessary flexibility to achieve such properties as “symmetry” for compactly supported wavelets and, more importantly, to be able to extend the classical theory of spline functions with arbitrary knots to a new theory of spline-wavelets that possess such importan...
متن کاملOn Dual Wavelet Tight Frames
A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton’s result on wavelet tight frames in L(IR) is generalized to the n-dimensional case. Two ways of constructing certain dual wavelet tight frames in L(IR) are suggested. Finally examples of smooth wavelet tight frames in L(IR) and H(IR) are provided. In...
متن کاملAn Algebraic Perspective on Multivariate Tight Wavelet Frames. II
Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials...
متن کاملCharacterization of Sobolev Spaces of Arbitrary Smoothness Using Nonstationary Tight Wavelet Frames
In this paper we shall characterize Sobolev spaces of an arbitrary order of smoothness using nonstationary tight wavelet frames for L2(R). In particular, we show that a Sobolev space of an arbitrary fixed order of smoothness can be characterized in terms of the weighted `2-norm of the analysis wavelet coefficient sequences using a fixed compactly supported nonstationary tight wavelet frame in L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2005
ISSN: 1063-5203
DOI: 10.1016/j.acha.2004.09.004